Residual reduction algorithms for nonsymmetric saddle point problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Residual reduction algorithms for nonsymmetric saddle point problems

In this paper, we introduce and analyze Uzawa algorithms for non-symmetric saddle point systems. Convergence for the algorithms is established based on new spectral results about Schur complements. A new Uzawa type algorithm with optimal relaxation parameters at each new iteration is introduced and analyzed in a general framework. Numerical results supporting the efficiency of the algorithms ar...

متن کامل

Uzawa type algorithms for nonsymmetric saddle point problems

In this paper, we consider iterative algorithms of Uzawa type for solving linear nonsymmetric saddle point problems. Specifically, we consider systems, written as usual in block form, where the upper left block is an invertible linear operator with positive definite symmetric part. Such saddle point problems arise, for example, in certain finite element and finite difference discretizations of ...

متن کامل

A Class of Nonsymmetric Preconditioners for Saddle Point Problems

For iterative solution of saddle point problems, a nonsymmetric preconditioning is studied which, with respect to the upper-left block of the system matrix, can be seen as a variant of SSOR. An idealized situation where the SSOR is taken with respect to the skew-symmetric part plus the diagonal part of the upper-left block is analyzed in detail. Since action of the preconditioner involves solut...

متن کامل

Block LU Preconditioners for Symmetric and Nonsymmetric Saddle Point Problems

In this paper, a block LU preconditioner for saddle point problems is presented. The main diierence between the approach presented here and that of other studies is that an explicit, accurate approximation of the Schur complement matrix is eeciently computed. This is used to compute a preconditioner to the Schur complement matrix that in turn deenes a preconditioner for a global iteration. The ...

متن کامل

A Preconditioned Scheme for Nonsymmetric Saddle-Point Problems

In this paper, we present an effective preconditioning technique for solving nonsymmetric saddle-point problems. In particular, we consider those saddlepoint problems that arise in the numerical simulation of particulate flows—flow of solid particles in incompressible fluids, using mixed finite element discretization of the Navier–Stokes equations. These indefinite linear systems are solved usi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2011

ISSN: 0377-0427

DOI: 10.1016/j.cam.2010.09.002